

iScript™ IV First-Strand cDNA Synthesis Kit

Catalog Number: D041-1, D041-2

Table 1. Kit Components and Storage

Kit Component	D041-1 (25 rxns)	D041-2 (100 rxns)	Storage	Stability
RT Enzyme Mix (10X)	50 μL	200 µL		The product is stable for one year when stored as directed.
RT Reaction Mix (2X)	250 µL	1 mL	-20°C in a non- frost-free freezer	
Nuclease-free H₂O	250 µL	1 mL		

Product Description

iScript™ IV Reverse Transcriptase (RT) is a novel recombinant reverse transcriptase that exhibits much higher efficiency in the first-strand cDNA synthesis from RNA templates with secondary structures and high GC content. The iScript™ IV Reverse Transcriptase is engineered to work under high temperatures (50-55°C), which can further facilitate to resolve the secondary structures and high GC problems of RNA. Besides, the iScript™ IV RT is significantly improved in inhibitor resistance, processivity, and reaction speed. iScript™ IV RT is designed to provide reliable, consistent, and fast cDNA synthesis in the presence of inhibitors found in a wide variety of samples.

iScript™ IV First-Strand cDNA Synthesis Kit is a proprietary mixture of all materials required for first-strand cDNA synthesis. This optimized RT Reaction Mix (2X) contains dNTPs, and a balanced concentration for Oligo(dT)₂₀ and Random Primers. The RT Enzyme Mix contains iScript™ IV Reverse Transcriptase and RNase Inhibitor. Oligo(dT)₂₀ anneals selectively to the poly(A) tail of mRNAs. Random Primers do not require the presence of poly(A) and they are utilized for the transcription of mRNA 5'-end regions. The first-strand cDNA can be directly used as a template in PCR.

Applications

- cDNA synthesis for PCR.
- Construction of cDNA libraries.
- Generation of probes for hybridization.

Product Specifications

- Storage Buffer: 20 mM Tris-HCl (pH 7.5 at 25°C), 100 mM NaCl, 1 mM DTT, 0.1 mM EDTA, 0.01% (v/v) NP-40, and 50% (v/v) glycerol.
- Unit Definition: One unit is defined as the amount of enzyme required to incorporate 1 nmole of dTTP into acid-precipitable material in 10 min at 37°C using poly(A)/ oligo(dT)₁₈ as a template/primer.
- Unit Reaction Conditions: 50 mM Tris-HCl (pH 8.3), 4 mM MgCl₂, 10 mM DTT, 50 mM KCl, 0.5 mM dTTP, 0.4 MBg/mL [³H]-dTTP, 0.4 mM poly(A)/oligo(dT)₁₈ and enzyme in 20 µl for 10 min at 37°C.

General Protocol for First-Strand cDNA Synthesis

RT reactions should be assembled in a RNase-free environment. The use of clean pipettes designated for PCR and aerosol resistant barrier tips are recommended.

- 1. Thaw template RNA and all reagents on ice. Mix each solution by vortexing, and centrifuge briefly to collect residual liquid from the sides of the tubes.
- 2. Prepare the following reaction mixture in a tube on ice:

Component	20 μL rxn	Final Concentration
Total RNA or poly(A) ⁺ RNA	x μL	1 ng-2 µg total RNA or 10 pg-500 ng mRNA
2x RT Reaction Mix	10 µL	1×
RNase-free H ₂ O	to 18 μL	

- 3. **Optional:** Heat mixture to 65°C for 5 mins and incubate on ice for at least 1 min. Collect all components by a brief centrifugation.
- 4. Add 2 μ L RT Enzyme Mix (10X), mix thoroughly and carefully by vortexing for 3 -5 seconds. Centrifuge briefly to collect the contents of the tube.
- 5. Incubate the tube at 25°C for 10 minutes, then at 50°C for 50 minutes.
- 6. Stop the reaction by heating at 85°C for 5 minutes. Chill on ice. The newly synthesized first-strand cDNA can be used directly for PCR.

Notes:

- 1. Isolation of poly(A)+RNA from total RNA is not mandatory. However, doing so may improve the yield and purity of the final product.
- 2. In most cases, cDNA synthesized with this enzyme can be directly used as a template for most polymerase chain reaction (PCR), without further purification. Generally, dilute the final reaction mix for 10 times with water. Use 1-2 µl of the diluted reaction mix for each PCR reaction.
- 3. To remove RNA complementary to the cDNA, add 1 μl (2 U) of *E. coli* RNase H and incubate at 37°C for 20 mins.
- 4. RNA sample must be free of contaminating genomic DNA.
- 5. Unlike the oligo(dT) priming, which usually requires no optimization, the ratio of a random primer to RNA is critical in terms of the average length of cDNA synthesized in the reaction. Increasing the ratio of random primer/RNA will result in higher yield of shorter (~500bp) cDNA, whereas decreasing this ratio will produce longer products.
- 6. The synthesized cDNA should be stored at -20°C.