

2×Taq PCR Master Mix

Catalog Number: D008-1, D008-2

Table 1. Contents and Storage

Content	D008-1 (100 rxns)	D008-2 (500 rxns)	Storage	Stability
2×Taq PCR Master Mix	2×1.25 mL	10×1.25 mL	-20 °C, avoid repeated freeze-thaw	The product is stable for one year when stored as directed.

Product Description

ABP *Taq* PCR Master Mix is a 2× concentrated solution of *Taq* DNA Polymerase, dNTPs, and all of the components required for PCR, except DNA template and primers. *Taq* PCR Master Mix provides robust and reliable performance in PCR amplification. This pre-mixed formulation saves time and reduces contamination due to a reduced number of pipetting steps required for PCR set up. The mix is optimized for efficient and reproducible PCR.

Special Features

- Convenient, ready-to-use mix.
- ❖ Thermostable: half life is more than 40 min at 95°C.
- Generates PCR products with 3'-dA overhangs.
- Incorporates modified nucleotides (e.g., biotin-, digoxigenin-, fluorescently-labeled nucleotides).

Applications

- Routine PCR amplification of DNA fragments up to 5 kb.
- High throughput PCR.
- DNA labeling.

Composition of *Taq* PCR Master Mix (2X)

 $0.05~U/\mu L~Taq~DNA~polymerase,~reaction~buffer,~4~mM~MgCl_2,~0.4~mM~of~each~dNTP~(dATP,~dCTP,~dGTP~and~dTTP).$

General Protocol

The following basic protocol serves as a general guideline and a starting point for any PCR amplification. Optimal reaction conditions (incubation times and temperatures, concentration of *Taq* DNA polymerase, primers, Mg²⁺, and template DNA) vary and need to be optimized. Critical parameters and troubleshooting information are documented in reference 1.

Assemble PCR reactions in a nuclease-free environment. Use of "clean" dedicated pipettes and aerosol resistant barrier tips are recommended.

1. Thaw template DNA and all reagents on ice. Mix each solution by vortexing, and centrifuge briefly to collect residual liquid from the sides of the tubes.

2. Prepare the following reaction mixture in a PCR tube on ice:

Component	Volume	Final Concentration
Template DNA	x μL	1-500 ng
2×Taq PCR Master Mix	25 µL	1×
Forward Primer (10 µM)	2.5 µL	500 nM
Reverse Primer (10 µM)	2.5 µL	500 nM
Nuclease-free H ₂ O	to 50 μL	-

- 3. Mix, and then briefly centrifuge the contents.
- 4. Perform PCR using the recommended thermal cycling conditions outlined below:

Steps	Temperature	Duration	Cycle
Initial Denaturation	95°C	1-3 min	1
Denaturation	95°C	30 sec	
Annealing*	Tm-5	30 sec	25-35
Extension	72°C	1 kb/min	
Final Extension	72°C	10 min	1
Holding	4°C	-	1

5. Analyze the amplification products by agarose gel electrophoresis.

GUIDELINES FOR PREVENTING CONTAMINATION OF PCR REACTION

During PCR more than 10 million copies of template DNA are generated. Therefore, care must be taken to avoid contamination with other templates and amplicons that may be present in the laboratory environment. General recommendations to lower the risk of contamination are as follows:

- Prepare your DNA sample, set up the PCR mixture, perform thermal cycling and analyze PCR products in separate areas.
- Set up PCR mixtures in a laminar flow cabinet equipped with an UV lamp.
- Wear fresh gloves for DNA purification and reaction set up.
- Use reagent containers dedicated for PCR. Use positive displacement pipettes, or pipette tips with aerosol filters to prepare DNA samples and perform PCR set up.
- Always perform "no template control" (NTC) reactions to check for contamination.

Reference

Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, eds. (1990) PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, CA.