

# TUNEL Chromogenic Apoptosis Detection Kit Catalog Number: A049

Table 1. Kit Components and Storage

| Material                             | Amount | Concentration | Storage            | Stability                                                 |  |
|--------------------------------------|--------|---------------|--------------------|-----------------------------------------------------------|--|
| TdT reaction buffer<br>(Component A) | 8 mL   | 1X solution   |                    |                                                           |  |
| TdT enzyme (Component B)             | 100 μL | 15 U/μL       |                    |                                                           |  |
| Biotin-11-dUTP (Component C)         | 50 μL  | 50X solution  |                    | The product is stable for 1 year when stored as directed. |  |
| HRP-Streptavidin (Component D)       | 50 μL  | 100X solution | • -20 °C,          |                                                           |  |
| DAB stock solution<br>(Component E)  | 150 μL | 33X solution  | Protect from light |                                                           |  |
| DAB diluent (Component F)            | 5 mL   | 1X solution   |                    |                                                           |  |
| DNase I (Component G)                | 10 μL  | 2 U/μL        |                    |                                                           |  |
| DNase I buffer (Component H)         | 1 mL   | 1X solution   |                    |                                                           |  |

Number of assays: 50 assays.

#### Introduction

Internucleosomal cleavage of DNA is a hallmark of apoptosis. DNA cleavage in apoptotic cells can be detected in situ in fixed cells or tissue sections using the terminal deoxynucleotidyl transferase (TdT) mediated dUTP nick-end labeling (TUNEL) method. TUNEL is highly selective for the detection of apoptotic cells but not necrotic cells or cells with DNA strand breaks resulting from irradiation or drug treatment.

In the TUNEL assay, TdT enzyme catalyzes the addition of labeled dUTP to the 3' ends of cleaved DNA fragments. Hapten-tagged dUTP (e.g. digoxigenin-dUTP or biotin-dUTP) can be detected using secondary reagents (e.g. anti-digoxigenin antibodies or streptavidin) for fluorescence or colorimetric detection. Alternatively, fluorescent dye-conjugated dUTP can be used for direct detection of fragmented DNA by fluorescence microscopy or flow cytometry. The TUNEL Chromogenic Apoptosis Detection Kit contains dUTP conjugated to biotin and HRP-Streptavidin conjugate for high sensitive TUNEL staining.

## **Materials Required but Not Provided**

- Phosphate buffered saline (PBS)
- 4% formaldehyde in PBS
- 0.2% Triton X-100 in PBS
- 3% BSA in PBS
- 2% hydrogen peroxide
- 2X SSC buffer: 300 mM NaCl, 30 mM sodium citrate
- Staining buffer: 0.6 M NaCl, 60 mM sodium citrate, 0.1% Triton X-100, 1% BSA, pH 7.4
- · Hematoxylin counterstain
- Mounting medium

- Deparaffinization solvents (Optional)
- Proteinase K (Optional)

## **Experimental Protocols**

## **Sample Preparation**

#### 1. Preparation of cultured cells or fresh-frozen tissue sections

Note: Apoptotic cells can detach from adherent cell cultures and be lost during wash steps. Culture supernatants may be stained using suspension cell protocols to detect detached apoptotic cells.

- 1.1 Wash cells or sections twice in PBS.
- 1.2 Fix cells or tissues in 4% formaldehyde in PBS (pH 7.4) for 30 minutes at 4°C (not required for fixed-frozen sections)
- 1.3 Wash twice in PBS.
- 1.4 Permeabilize in PBS containing 0.2% Triton X-100 for 30 minutes at room temperature.
- 1.5 Wash twice in PBS.

## 2. Preparation of paraffin tissue sections

2.1 Deparaffinize and rehydrate tissue sections in Coplin jars at room temperature according to Tabel 2, below.

Table 2. Tissue deparaffinization procedure.

| Xylenes | Xylenes | 100% EtOH | 100% EtOH | 95% EtOH | 85% EtOH | 75% EtOH | 1X PBS | 1X PBS |
|---------|---------|-----------|-----------|----------|----------|----------|--------|--------|
| 5 min   | 5 min   | 5 min     | 5 min     | 5 min    | 3 min    | 3 min    | 5 min  | 5 min  |

- 2.2 Prepare Proteinase K solution at 20  $\mu$ g/mL in PBS. After use, aliquot any remaining stock solution and store at -20°C.
- 2.3 Permeabilize sections with 100  $\mu$ L of 20  $\mu$ g/mL proteinase K solution for 30 minutes at room temperature. Proteinase K incubation time and temperature may require optimization depending on tissue type. Alternatively, microwave antigen retrieval protocols may be used at this step.
- 2.4 Rinse in PBS. Wash 2 x 5 minutes in PBS.

## **Positive Control Preparation**

Note: The DNase I generates strand breaks in the DNA to provide a positive TUNEL reaction.

- 3.1 Wash sample with deionized water.
- 3.2 Incubate samples with 50 µL DNase I buffer (Component H) for 10 minutes.
- 3.3 Prepare DNase I solution according to Table 3 and mix well.

Note: Do not vortex the DNase I solution as DNase I denatures with vigorous mixing.

Table 3. DNase I solution.

| Reaction Components          | Number of coverslips |        |        |  |  |
|------------------------------|----------------------|--------|--------|--|--|
| Reaction Components          | 1                    | 2      | 3      |  |  |
| DNase I (Component G)        | 1 μL                 | 2 µL   | 3 µL   |  |  |
| DNase I buffer (Component H) | 49 µL                | 98 µL  | 147 µL |  |  |
| Total Volume                 | 50 μL                | 100 μL | 150 µL |  |  |

- 3.4 Remove DNase I buffer and add 50  $\mu$ L of the DNase I solution to each sample and incubate for 30 minutes at room temperature.
- 3.5 Wash sample once with deionized water.



#### **TUNEL Reaction**

- 4.1 Incubate samples with 2% hydrogen peroxide for 5 min at room temperature to inactivate endogenous peroxidases.
- 4.2 Rinse in PBS. Wash 2 x 5 minutes in PBS.
- 4.3 Incubate samples with 100 µL TdT reaction buffer (Component A) for 10 minutes.
- 4.4 Immediately before use, prepare the TdT reaction cocktail according to Table 4.

Table 4. TdT reaction cocktails.

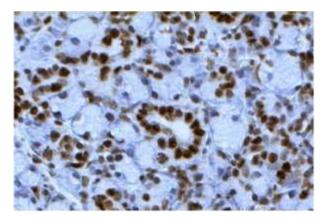
| Reaction Components               | Number of samples |        |        |        |        |  |
|-----------------------------------|-------------------|--------|--------|--------|--------|--|
|                                   | 1                 | 2      | 4      | 5      | 10     |  |
| TdT reaction buffer (Component A) | 47 µL             | 94 µL  | 188 µL | 376 µL | 470 µL |  |
| TdT enzyme<br>(Component B)       | 2 µL              | 4 µL   | 8 µL   | 16 µL  | 20 µL  |  |
| Biotin-11-dUTP<br>(Component C)   | 1 μL              | 2 µL   | 4 μL   | 8 µL   | 10 µL  |  |
| Total Volume                      | 50 μL             | 100 μL | 200 μL | 400 μL | 500 μL |  |

- 4.5 Remove TdT reaction buffer and add 50 µL TdT reaction cocktail to each sample, and allow the solution to spread completely over the surface.
- a) For adherent cells or tissue sections, cover sample with a Parafilm coverslip to spread buffer evenly over cells or tissue section.
- b) For negative control samples, add 50 µL TdT reaction cocktail without TdT Enzyme.
- 4.6 For cell staining, incubate for 60 minutes at 37°C, protected from light. Tissue staining may require 2 hours incubation at 37°C.
  - a) For adherent cells or tissue sections, perform incubation in a humid chamber.
- b) For cells in suspension, perform incubation in a microplate on a rocking platform, or resuspend cells in reaction buffer every 15 minutes by gently flicking tubes.
- 4.7 Stop reaction by incubating samples 2 x 10 minutes in 2X SSC.
- 4.8 Wash samples 2 x 10 minutes in 3%BSA in PBS.
- 4.9 Prepare the HRP-Streptavidin staining solution according to Table 5.

Table 5. HRP-Streptavidin staining solution.

| Reaction Components               | Number of samples |        |        |        |         |  |
|-----------------------------------|-------------------|--------|--------|--------|---------|--|
|                                   | 1                 | 2      | 4      | 5      | 10      |  |
| HRP-Streptavidin<br>(Component D) | 1 μL              | 2 μL   | 4 μL   | 5 μL   | 10 μL   |  |
| Staining buffer                   | 99 µL             | 198 µL | 396 µL | 495 µL | 990 µL  |  |
| Total Volume                      | 100 µL            | 200 μL | 400 µL | 500 μL | 1000 μL |  |

Staining buffer: 0.6 M NaCl, 60 mM sodium citrate, 0.1% Triton X-100, 1% BSA, pH 7.4.


- 4.10 Add 100 μL HRP-Streptavidin staining solution to each sample, and incubate for 30 minutes at room temperature, protected from light. Tissue staining may require 1 hours incubation at room temperature.
- 4.11 Wash samples 2 x 5 minutes in 3%BSA in PBS.

4.12 Prepare DAB staining solution according to Table 6.

Table 6. DAB staining solution.

| Reaction Components                 | Number of samples |        |        |        |         |  |
|-------------------------------------|-------------------|--------|--------|--------|---------|--|
|                                     | 1                 | 2      | 4      | 5      | 10      |  |
| DAB stock solution<br>(Component E) | 3 µL              | 6 μL   | 12 µL  | 15 µL  | 30 µL   |  |
| DAB diluent (Component F)           | 97 µL             | 194 µL | 388 µL | 485 µL | 970 μL  |  |
| Total Volume                        | 100 μL            | 200 µL | 400 µL | 500 μL | 1000 µL |  |

- 4.13 Add 100 μL DAB staining solution to each sample, and incubate at room temperature. Monitor color development until desired level of staining is achieved (typically 10-60 min). Stop the reaction by rinsing with PBS.
- 4.14 Counterstain samples with hematoxylin stain if desired. Mount samples in mouting medium for light microscopy.



**Figure 1**. Detection of apoptotic cells in mouse tongue tissue using TUNEL Chromogenic Apoptosis Detection Kit.